Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil
نویسندگان
چکیده
The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.
منابع مشابه
Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments
Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II...
متن کاملFe-bearing Clay Mineral: A Significant Fe Pool for Abiotic Electron Transfer
Clay minerals, which totally make up 4-5% of the earth’s crust, are generally classified into three different phyllosilicate: illites, smectites and kaolins. Of these, kaolin generally has the lowest Fe content and illite the highest; however, smectite also has appreciable Fe contents (<30 wt %). In this editorial, the focus is restricted to the Fe-bearing smectites, since smectites are ubiquit...
متن کاملGrowth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.
Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Arch...
متن کاملPhyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars.
Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by r...
متن کاملThe mineralogy and chemistry of fine-grained sediments, Morphou Bay, Cyprus
The mineralogy and chemistry of the less than 20μm fraction of marine sediments at Morphou Bay, north-west Cyprus, are presented to characterise fine-grained sediment supplies from basic and ultrabasic rocks of the Troodos Massif within a typological setting. The sediments comprise a mixture of smectite, illite, kaolinite and iron rich chlorite. They also contain amorphous iron oxides/hydroxide...
متن کامل